UNIST, 25% 발전효율 기록한 페로브스카이트 태양전지 개발
  • 정한교 기자
  • 승인 2020.10.05 11:39
  • 댓글 0
이 기사를 공유합니다

광활성층 구성 이온 바꿔 구조 변형 최소화로 발전효율 및 구조적 안정성 높여

[인더스트리뉴스 정한교 기자] 건물일체형태양광(Building Integrated Photo Voltaic, BIPV) 시장이 활성화되는 상황에서 건물 외벽이나 차량 선루프에서도 높은 발전효율과 안정성을 이끌어낼 수 있는 태양전지가 개발돼 눈길을 끌고 있다.

UNIST 에너지화학공학과 석상일 교수(사진)팀이 25.17% 발전효율을 기록한 페로브스카이트 태양전지 기술을 개발했다. [사진=UNIST]

UNIST(총장 이용훈) 에너지화학공학과 석상일 교수팀은 페로브스카이트 태양전지 광활성층의 미세 구조 변형을 최소화해 발전효율과 안정성을 모두 잡을 수 있는 기술을 개발했다. 광활성층을 구성하는 입자(이온)간 크기를 고르게 맞춰주는 새로운 방법으로 내부 미세 구조가 틀어지거나 기울어져 발생하는 문제점을 해결한 것이다.

이 물질을 쓴 석 교수팀의 페로브스카이트 태양전지는 논문으로 보고된 최고효율인 25.17%의 발전효율을 기록했다. 이 기술은 최고 권위 과학저널인 사이언스(Science)誌에 10월 2일 자로 온라인 공개됐다.

페로브스카이트 태양전지는 상용화된 실리콘 태양전지와 달리 건물 외벽이나 주행하는 차량에 설치할 수 있다는 장점이 있다. 햇볕이 쫴지는 각도(입사각)에 영향을 덜 받고 가볍기 때문이다. 게다가 저온에서도 쉽게 제조할 수 있다. 페로브스카이트 태양전지가 상용화된다면 재생에너지의 패러다임을 바꿀 수 있는 이유다.

페로브스카이트 태양전지 전지 상용화에서 제일 중요한 과제는 안정성과 효율을 모두 갖춘 광활성층 소재를 개발하는 것이다. 광활성층은 태양광을 받아 전하(전기) 입자를 만들고 이를 전극으로 보내는 중요한 역할을 한다. 이때 물질 내부 미세 구조에 결함(vacancy)이 많으면 전하 입자 전달 효율이 떨어지는 문제가 있다. 결함에서 전하 입자가 사라지기 때문이다.

개발된 광활성층의 구조 및 페로브스카이트 태양전지 작동 원리 [자료=UNIST]
개발된 광활성층의 구조 및 페로브스카이트 태양전지 작동 원리. (A) 개발된 페로브스카이트 광활성층은 내부 구조에 쌓이는 압박(Strain)이 감소돼(Reduced Strain) 안정적이고 효율이 좋다. (B) 페로브스카이트 태양전지의 광활성층은 햇볕을 받아 각각 양전자와 음전하를 띠는 전하 입자(빨간색, 파란색 입자)를 만든다. 전하 입자가 전극으로 이동하면서 전류가 만들어진다. 이 양전하 입자와 음전자 입자 일부는 ‘재결합’을 통해 사라지는데, 광활성층에 결함(vacancy)이 많을수록 더 많은 전하 입자 손실이 발생한다. 내부 구조 내 압박이 줄면 결합 숫자가 감소한다. 하얀색은 페로브스카이트 물질을 구성하는 이온을 나타낸다. [자료=UNIST]

석상일 교수팀은 광활성층인 페로브스카이트를 구성하는 이온의 종류와 비율을 바꿔 내부 결함을 줄이고 화학적 안정성을 높였다. 결함의 주요 원인을 이온 크기가 서로 맞지 않아 발생하는 구조적 변형이라고 본 것이다.

이온 조성과 비율에 따른 전지 성능. (A) Cs, MDA 첨가 비율에 따른 광전지 효율인자들의 변화, (B) 광전류 밀도는 유지하면서 향상된 개방회로전압을 보이는 J(전류밀도)-V(전압) 커브 [자료=UNIST]
이온 조성과 비율에 따른 전지 성능. (A) Cs, MDA 첨가 비율에 따른 광전지 효율인자들의 변화 (B) 광전류 밀도는 유지하면서 향상된 개방회로전압을 보이는 J(전류밀도)-V(전압) 커브 [자료=UNIST]

크기가 큰 이온이 여러 개 있으면, 내부의 미세 구조가 틀어지거나 기울어져 결함이 발생한다. 마치 건축물의 철골 구조가 비틀어지거나 기울어지면 특정 부분이 파손되는 것과도 같다. 또한, 이 구조적 변형은 물질에 결함을 많이 만들 뿐만 아니라 물질을 불안정하게 하고 전하 전달도 방해한다.

기존 소재와 본 연구에서 설계된 소재로 제작된 페로브스카이트 태양전지의 안정성 비교. (A) 85℃ 열 안정성 (B) 150℃ 열 안정성 (C) 광 안정성 [자료=UNIST]
기존 소재와 본 연구에서 설계된 소재로 제작된 페로브스카이트 태양전지의 안정성 비교. (A) 85℃ 열 안정성 (B) 150℃ 열 안정성 (C) 광 안정성 [자료=UNIST]

연구진이 개발한 페로브스카이트 소재는 내부의 압력과 변형이 완화돼 구조적 안정성을 얻었을 뿐만 아니라 결함이 적어 전지가 태양광을 전기에너지로 바꾸는 효율이 높다. 이를 통해 25.17%의 높은 효율(공인 인증 효율 24.44%)을 갖는 페로브스카이트 태양전지를 얻을 수 있었다.

석상일 교수는 “페로브스카이트 구조와 물질에 관한 심도 있는 이해를 바탕으로 효율과 안정성을 모두 갖춘 광활성층 소재를 개발할 수 있었다”며, “소재 원천 기술을 확보했다는 점에서 향후 차세대 태양전지 시장에서 기술적 우위를 점하는 데 기여할 뜻 깊은 연구”라고 설명했다.

한편, 석 교수팀은 페로브스카이트 태양전지 분야의 흐름을 세계적으로 선도하고 있다. 석 교수는 페로브스카이트 태양전지로 마의 효율이라 불렸던 20%를 처음 넘긴 것은 물론 최고 효율을 스스로 다섯 차례나 경신한 이력을 가지고 있으며, 지금도 세계 최고의 기록을 보유하고 있다.

페로브스카이트 태양전지와 관련해 세계 최고 권위의 저널(journal)인 사이언스에 보고한 논문도 이번 연구를 포함해 총 6편에 이른다. 특히, ‘화학 분자 상호교환법 (Intramolecular exchange)’과 ‘아이오딘 처리(Iodide management)’를 통해 세계효율을 경신했던 논문은 최근 3년 동안 사이언스지에 발표된 전체 논문에서 인용 수 1위를 기록하고 있다.


관련기사

댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.